Faszinierende Technik in neuer Leichtigkeit

Der Audi A2 ist unser Wegbereiter für fortschrittliche Mobilität im 21. Jahrhundert und gleichzeitig das erste in Großserie gefertigte Automobil mit Aluminiumkarosserie.

Er bietet mit zukunftsweisendem Leichtbau eine neue Dimension von Dynamik und Wirtschaftlichkeit.

Ein Automobil für die moderne Welt,
innovativ, kompakt, geräumig, leicht, sicher und umweltverträglich.
Das Selbststudienprogramm informiert Sie über Konstruktionen und Funktionen.

Das Selbststudienprogramm ist kein Reparaturleitfaden!

Für Wartungs- und Reparaturarbeiten nutzen Sie bitte unbedingt die aktuelle, technische Literatur.
Karosserie

Wer glaubt, dass nur Stahl stabil sein kann, kennt Aluminium noch nicht.

Durch Audi-Space-Frame ASF® ist die Aluminium-Karosserie des Audi A2 um mehr als 40 % leichter als bei konventioneller Stahlbauweise. Das Leergewicht beträgt nur 895 kg, rund 150 kg weniger, als bei Fahrzeugen dieser Größenordnung.

Antrieb

Das besonders durchzugskräftige 1,4 l TDI-Dreizylinder-Aggregat mit 55 kW und Pumpe-Düse-Einspritzung verbraucht lediglich 4,2 Liter Dieselkraftstoff pro 100 Kilometer, beschleunigt in 12,1 Sekunden von 0 - 100 km/h und erreicht 173 km/h Endgeschwindigkeit.

Der 1,4 l-Vierzylinder-Benzinmotor mit ebenfalls 55 kW verhilft dem Audi A2 zu vergleichbaren Fahrleistungen und gibt sich mit einem Durchschnittsverbrauch von 6,0 l zufrieden und ist schadstoffarm nach EU4.

Mit dem 1,2 l-Dreizylinder TDI bietet Audi zu einem späteren Zeitpunkt als erster Hersteller weltweit ein viertüriges 3-Liter Auto an.
Sicherheit

Der Audi-Space-Frame aus hochfesten Aluminiumprofilen bietet seinen Insassen, der sie wie ein schützender Käfig umgibt, eine hohe passive Sicherheit.

Fahrer-, Beifahrer- und Seiten-Airbags sind serienmäßig. Optional ist der SIDEGUARD erhältlich.

Fahrwerk

Im Audi A2 kombiniert Audi modernste Elektronikkomponenten, wie das serienmäßige ABS, EBV und ESP mit der ausgereiften Technik einer McPherson-Federbeinachse vorn und einer Verbundlenker-Hinterachse.

Durch die neue elektrohydraulische Servolenkung wird eine optimale Lenkkraftunterstützung zur Verfügung gestellt.

Wartung

Der LongLife-Service ist bei den oben genannten Motorvarianten ab Markteinführung realisiert.
Der Audi-Space-Frame des Audi A2

besteht aus

- 183 Aluminium-Blechen
- 22 Strangpressprofilen
- 20 Gussknoten

Die vorderen Längsträger bestehen aus Aluminiumrohren, die eine sehr hohe Verformungsenergie aufnehmen und ohne Schweißarbeiten erneuert werden können.

Das Open Sky Dach (optional)

bietet im Vergleich zu einem Normalschiebedach eine 58 % größere Öffnung und 166 % größere Durchsichtsfläche.

Detaillierte Informationen finden Sie im SSP 239.
Zubehör darf nur verwendet werden, das von der Audi AG freigegeben ist!

Kontaktkorrosionsschäden fallen nicht unter die Gewährleistung!

Weitere Informationen zur Aluminium-Technologie entnehmen Sie bitte den SSP’s Nr. 160 und 239.

Elektrochemische Spannungsreihe (Auszug)

Blei
Zinn
Eisen
Chrom
Zink
Aluminium

Erstmalig im Automobilbau kommt ein einteiliger Seitenwandrahmen aus Aluminium zum Einsatz.

Zur Demontage der oberen B-Säulen-Innenverkleidung bei Fahrzeugen mit SIDEGUARD muss zuerst das äußere B-Säulen-Zierblech abgeschraubt werden. Hinter der oberen Gummizüge befindet sich eine Schraube, die von außen entfernt werden muss, bevor die Innenverkleidung ausgeclipst werden kann.

Deshalb nur Original Audi A2-Teile verwenden.
Das Space-Floor-Konzept

Bestehend aus zwei Böden im Bei- und Fahrerbereich, in dessen Zwischenraum z. B. das Motorsteuergerät, das Steuergerät für Zentralverriegelung und Zusatzrelaisträger untergebracht sind.

Dadurch ergibt sich ein abgesenkter Fußraum (Space-Floor) im Fond. Die Fondpassagiere können die Beine ganz normal abwinkeln und somit eine ergonomisch optimale Sitzhaltung einnehmen.

Frontklappe

Das Service-Modul ermöglicht bequemes Kontrollieren und Nachfüllen von Öl und Waschwasser.

Nachdem die Schnellverschlüsse hinter der Serviceklappe gelöst sind, lässt sich die Motorhaube nicht nur aufklappen, sondern ganz herausnehmen.
Heckklappe

Der Schließzylinder in der Heckklappe ist entfallen. Das Öffnen erfolgt über die Funkfernbedienung (optional) oder wird manuell mit Hilfe der Soft Touch Taste ausgelöst.

Bei Ausfall der elektrischen Anlage ist die Notentriegelung über einen Seilzug an der Heckklappenverkleidung möglich.

Der Betätigungsgriff ist in der Gepäckraumabdeckung eingelassen.

Fahrzeugidentifizierung

Zur eindeutigen Identifizierung eines Fahrzeugs werden verschiedene Darstellungsformen und -orte verwendet.

Neben den bekannten Identifizierungsstellen im Motorraum, Reserveradmulde oder dem Aufkleber im Serviceheft sind einige veränderte bzw. neue Orte im Audi A2 hinzugekommen.

Typschild im Beifahrerfußraum.

Neu ist die Fahrgestellnummer auf dem Mitteltunnel im Fondbereich ...

... und eine Chrom-Nickel-Plakette im Zwischenboden der Fahrerseite. Diese Plakette ist eingeklebt und aufgrund der Materialzusammensetzung korrosionsbeständig.
Türen

Die Türen des Audi A2 sind zweiteilig ausgeführt.

Der Aggregateträger und Tür-Seitenaufprallschutz sind zu einem Bauteil verschmolzen. Zusätzlich schützt ein Seitenschutzpolster den Beckenbereich.

Bei der Bestellung eines Audi A2 ohne Funkfernbedienung ist in der Beifahrertür ebenfalls ein Schließzylinder verbaut.

Zweistufige Fensterheber-Schalter vorn und hinten

Funktionen:

1 automatischer Hochlauf
2 manueller Hochlauf
3 manueller Tieflauf
4 automatischer Tieflauf
Tankklappe

Die Tankklappe öffnet nur elektrisch über einen Schalter in der B-Säule Fahrerseite.

Bei Ausfall der elektrischen Anlage erfolgt die Notentriegelung per nach unten drücken des Stellgliedes für Tankdeckel.

![Tankklappe](SSP240_036)

Kofferraummulde

In der Kofferraummulde sind untergebracht:

- die Batterie
- das Reifen Mobility System
- das Bordwerkzeug
- der Navigationsrechner (optional)
- ein Schaumteil

Das Schaumteil muss in der verbauten Position bleiben, da sonst eine Beschädigung der Batterie im Crashfalle besteht.

![Kofferraummulde](SSP240_037)
Isofix

Beim Audi A2 ist die Vorbereitung für Isofix Bestandteil der Serienausstattung der hintere ren Sitze.

Erstmals ist als Sonderausstattung Isofix für den Beifahrersitz in Kombination mit dem Airbagschlüsselschalter zur Deaktivierung des Beifahrerairbags erhältlich.

Motor

1,4 l - TDI (55 kW) AMF

Technische Daten

Kennbuchstabe: AMF
Bauart: Dreizylinder Reihenmotor mit Turboaufladung
Hubraum: 1422 cm³
Leistung: 55 kW (75 PS) bei 4000 1/min
Drehmoment: 195 Nm bei 2200 1/min
Bohrung: 79,5 mm
Hub: 95,5 mm
Verdichtung: 19,5 : 1
Gewicht: 130 kg

Zündfolge: 1 - 2 - 3
Gemischaufbereitung: Direkteinspritzung mit Pumpe-Düse-Einheit
Abgasturbolader: Turbolader Garrett GT 12 mit Wastegate-Ventil
Abgasreinigung: Oxydationskatalysator und Abgasrückführung
Abgasnorm: EU 3
Kraftstoff: Diesel min. 49 CZ, RME

Konstruktion und Funktion des 1,4 l TDI Pumpe-Düse-Motors entnehmen Sie dem SSP 223.

Motorkennbuchstabe und Motornummer befinden sich an der Trennfuge Motor/Getriebe vorn.
1,4 l - 16 V (55 kW) AUA

Technische Daten

Kennbuchstabe: AUA
Bauart: Vierzylinder Reihenmotor Ottomotor
Hubraum: 1390 cm³
Leistung: 55 kW (75 PS) bei 5000 1/min
Drehmoment: 126 Nm bei 3800 1/min
Bohrung: 76,5 mm
Hub: 75,6 mm
Verdichtung: 10,5 : 1
Gewicht: 90 kg

Zündfolge: 1 - 3 - 4 - 2
Gemisch- aufbereitung: elektronische, sequentielle Multipoint-Einspritzung, adaptive Leerlauf- füllungsregelung, Schubabschaltung
Zündsystem: verteilerlose Zündanlage mit ruhender Hochspannungs- verteilung, Longlife-Zündkerzen
Abgasreinigung: 3-Wege-Katalysator, 2 beheizte Lambda-Sonden, Aktivkohlefilter
Abgasnorm: EU 4
Kraftstoff: Benzin bleifrei 95 ROZ

Konstruktion und Funktion des 1,4 l-Motors entnehmen Sie dem SSP 247.

- Lambdaregelung mit Vor- und Nach- katsonden (EOBD)
- Elektrisches Abgasrückführungsventil
- Ventilbetätigung über Rollenschlepphebel
Readiness-Code

Der Readiness-Code ist ein 8-stelliger Zahlencode, der den Status der abgasrelevanten Diagnosen anzeigt.

Die Diagnosen werden im normalen Fahrbetrieb in regelmäßigen Abständen durchgeführt.

In Verbindung mit der EOBD (Euro-On-Board-Diagnose) ist es empfehlenswert, nach einer Reparatur an abgasrelevanten Systemen den Readiness-Code, Adresswort 01 (Funktion 15) zu erzeugen. Somit ist eine Reparatur unmittelbar zu kontrollieren.

Bedeutung des 8-stelligen Zahlenblockes für Readiness-Code

<table>
<thead>
<tr>
<th>Diagnosefunktion</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Katalysator</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>immer „0“</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aktivkohlebehälter-Anlage (Tankentlüftungs-System)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>immer „0“</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lambdasonden</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lambdasonden-Heizung</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abgasrückführung</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wenn die Diagnose für ein System (z. B. Lambdasonden) erfolgreich durchlaufen ist, wird die entsprechende Stelle des Zahlencodes von 1 auf 0 gesetzt.

Die genaue Vorgehensweise entnehmen Sie bitte dem aktuellen Reparaturleitfaden.
Das bekannte 02J-Getriebe kommt im Audi A2 1,4 l TDI, für ein Drehmoment bis 250 Nm ausgelegt, zum Einsatz.

Das 02T-Getriebe ist ein extrem leichtes Zwei-Wellen-Getriebe. Die Gehäuseteile werden aus Magnesium gefertigt. Es ist ausgelegt, ein Drehmoment bis zu 200 Nm zu übertragen.

Konstruktion und Funktion des 1,4 l-Motors entnehmen Sie dem SSP 247.

Beide Getriebe werden über Wähln- und Schaltseilzüge betätigt.
Zur Verringerung der Querneigung bei Kurvenfahrt ist ein Stabilisator eingebaut, dessen Koppelstangen direkt unter den Federtellern angeschraubt sind.

Die Schraubenfedern haben im Federbein eine große Abstützbasis und sind zur Minimierung der Querkräfte desaxiert eingebaut. Feder und Dämpferkräfte werden getrennt in die Karosserie eingeleitet, um den Abrollkomfort zu erhöhen.
Hinterachse

Die Hinterachse ist eine Verbundlenkerachse. Sie ist über steigbügelförmige Profile aus Aluminium mit der Karosserie verschraubt.

Die großvolumigen Führungslager sind zur Minimierung unerwünschten Nachspurlenkens in einem Winkel von 25 Grad zur Querachse angeordnet.

Die Federn und Dämpfer sind getrennt angeordnet, um eine große Kofferraumbreite zu erreichen.

Die Spur kann durch Verschieben der „Steigbügel“ symmetrisch gestellt werden. Der Sturz ist nicht einstellbar.

Der Achsquerträger ist aus hydrogeformten, dünnwandigem Rohr hergestellt. Sein in der Mitte V-förmiges Profil, das zu den Enden hin aufgeweitet ist, macht den Achsquerträger biegesteif, aber relativ torsionsweich. Dadurch entfällt ein zusätzlicher Stabilisator.
Servolenkung

Der für die Lenkkraftunterstützung benötigte Systemdruck wird mit einer Hydraulikpumpe erzeugt.

Der Antrieb dieser Pumpe erfolgt beim herkömmlichen, bekannten System der Servolenkung direkt durch den Fahrzeugmotor.

Ein Teil der Motorleistung wird also ständig für den Pumpenantrieb benötigt.

Im Moment der am meisten erforderlichen Lenkkraftunterstützung – beim Rangieren – ist die Motordrehzahl am geringsten. Die Pumpenleistung ist für diesen Fall ausgelegt. Je schneller die Lenkgeschwindigkeit, um so höher die Pumpendrehzahl und damit der Volumenstrom. Bei höherer Motordrehzahl wird nicht benötigte Pumpenleistung über einen Bypass abgebaut.

Beim neuen Lenksystem unterstützt zwar ebenfalls die Hydraulik die menschliche Lenkkraft, die Hydraulikpumpe – eine Zahnradpumpe – wird aber durch einen Elektromotor angetrieben und ist vom Fahrzeugmotor mechanisch unabhängig.

Neu ist die lenkwinkelabhängige Lenkkraftunterstützung. Dafür ist über dem Lenkgehäuse zusätzlich ein Lenkwinkelsensor vorhanden, siehe Seite 26, Abb. SSP240_059, der die Lenkinkelgeschwindigkeit an die Steuer elektronik übermittelt. Die Lenkwinkelinformation erfolgt über eine Sensorleitung direkt an das Steuergerät.

Außerdem wird die Fahrgeschwindigkeit im Steuergerät bei der Auswertung erfasst. Diese Information erfolgt über CAN-BUS.

Den Systemaufbau zeigt nebenstehende Übersicht.
Bauteile und Einbauorte

Kontrolllampe für Servotronic K92

Die Kontrolllampe ist im Schalttafeleinsatz (Fahrer-Informations-System) integriert. Die Eigendiagnose erfolgt über das Adresswort 17 (Kombiinstrument).

Sensor für Lenkhilfe G250

Steuergerät für Lenkhilfe J500

Der Diagnoseanschluss befindet sich in der Ablage Fahrerseite.

Steuergerät für Lenkhilfe kann nicht einzeln ersetzt werden.
Fahrwerk

Systemübersicht

Servolenkgetriebe

Hohlschraube mit Rückschlagventil

Vorratsbehälter für Hydrauliköl

Druckbegrenzungsventil

Zahnradpumpe

Steuergerät für Lenkhilfe J500

Lenkhilfe Klemme +30
Lenkhilfe Klemme +15
Masse

Elektromotor

Signal Lenkwinkelgeschwindigkeit

Kontrolllampe für Servotronic K92

Steuergerät für 4LV J537

Steuergerte mit Anzeigeeinheit im Schalttafeleinsatz J285

Geber für Fahrgeschwindigkeit G22

Sensor für Lenkhilfe G250

Signal Fahrgeschwindigkeit

Signal Motordrehzahl

SSP240_058
Aufbau und Funktion

Das EPHS-Lenksystem (Electrically Powered Hydraulic Steering) ist eine von der Lenkwinkelgeschwindigkeit und Fahrgeschwindigkeit abhängige Servolenkung.

Die Pumpe für Lenkungshydraulik V119 besteht aus der Zahnradpumpe und dem Elektromotor.

Anstelle der Servopumpe (Flügelpumpe) bei den bisher bekannten Servolenkungen wird bei dieser Lenkung eine im Motorpumpenaggregat integrierte Zahnradpumpe verwendet.

Diese Zahnradpumpe wird nicht direkt über den Verbrennungsmotor des Fahrzeuges angetrieben, sondern von einem im Motorpumpenaggregat integrierten Elektromotor.

Der Elektromotor läuft nur bei eingeschalteter Zündung und laufendem Verbrennungsmotor.

Signale für Lenkwinkelgeschwindigkeit, für Fahrzeuggeschwindigkeit und Motordrehzahl werden an das Steuergerät gesendet. Dieses Steuergerät regelt die Drehzahl des Elektromotors sowie der Zahnradpumpe und damit die Fördermenge bzw. den Volumenstrom des Hydrauliköls.

Wiedereinschaltschutz

Der Wiedereinschaltschutz kann durch Ausschalten der Zündung und wieder Anlassen des Motors aufgehoben werden. Gegebenenfalls sind ca. 15 min zu warten, um ein Abkühlen des Motorpumpenaggregates nach Überhitzung zu ermöglichen. Kann nach dieser Wartezeit der Wiedereinschaltschutz durch Anlassen des Motors nicht aufgehoben werden, liegt eine Störung im Bordnetz vor bzw. das Motorpumpenaggregat ist defekt. In diesen Fällen ist die Eigendiagnose durchzuführen und ggf. das Motorpumpenaggregat zu ersetzen.
In der hydraulischen Steuereinheit befindet sich analog der bekannten Servolenkung ein Drehstab, der auf der einen Seite mit dem Drehstabe und auf der anderen Seite mit dem Antriebsritzel und der Steuerhülse verbunden ist.

Geradeausfahrt

Der Druck der rechten Seite drückt das Öl aus der linken Seite des Arbeitszylinders in den Rücklauf.

Wenn der Lenkvorgang beendet wird, sorgt der Drehstab dafür, dass der Drehschieber und die Steuerhülse in die Neutrallage zurückfedern.

Die Funktionsstellungen „Rechtseinschlag“ und „Linkseinschlag“ sind hydraulisch betrachtet analog der bekannten Servolenkung.

Linkseinschlag

Durch den in sich verformten Drehstab wird der Drehschieber gegen die Steuerhülse verdreht. Die Steuernuten des Drehschiebers geben den Druckölzulauf zur rechten Seite des Arbeitszylinders frei.

Das Drucköl strömt in den Arbeitszylinder und unterstützt die Lenkbewegung. Gleichzeitig schließt der Drehschieber den Zulauf zur linken Seite und öffnet den Rücklauf aus der linken Seite des Arbeitszylinders.

Der Druck der rechten Seite drückt das Öl aus der linken Seite des Arbeitszylinders in den Rücklauf.
Auch beim neuen Lenksystem unterstützt die Hydraulik die menschliche Lenkkraft. Die hydraulische Zahnradpumpe wird von einem Elektromotor angetrieben und ist daher vom Fahrzeugmotor-Antrieb unabhängig. Neu ist die lenkwinkelabhängige Lenkkraftunterstützung.

Zu einem späteren Termin wird das Signal vom Geber für Lenkwinkel G85 (siehe Seite 33) genutzt und damit entfällt der Sensor für Lenkhilfe G250 im Audi A2.
Beschreibung des Sensors für Lenkhilfe G250 (kapazitiver Sensor)

Prinzip Schema der Kondensatorverstimmung

Schema der Draufsicht
Das Motorpumpenaggregat besteht aus:
- der Hydraulikeinheit mit Zahnradpumpe und Elektromotor
- dem Vorratsbehälter für das Hydrauliköl
- der Steuerelektronik für die elektrohydraulische Lenkung

Zum Prüfen/Auffüllen des Hydrauliköles muss der linke Scheinwerfer zuvor ausgebaut werden.

Die Druck- und Rücklaufleitung für die Servolenkung darf keinesfalls abgeklemmt werden. Sonst Beschädigung der Kunststoffeinlage in den Leitung. Werden die Druck- und Rücklaufleitung hochgebunden, darf der Mindestbiegeradius von 100 mm nicht unterschritten werden.

Das Steuergerät für Lenkhilfe J500 setzt die eingehenden Signale
- Motordrehzahl G28
- Fahrgeschwindigkeit G68
- Lenkgeschwindigkeit G250

zum Antrieb der Zahnradpumpe in Abhängigkeit von Lenkwinkel- und Fahrgeschwindigkeit um.

Die Eigendiagnose erfolgt über das Kombiinstrument, Adresswort 17. Die Kommunikation erfolgt ausschließlich über den Antriebsstrang CAN-BUS.

Die Ausgabe der Fehlermeldung erfolgt über das Kombiinstrument.
Pumpenfunktion

<table>
<thead>
<tr>
<th>Zündung</th>
<th>Fahrzeugmotor</th>
<th>Elektrische Pumpe</th>
<th>Lenkkraftunterstützung</th>
</tr>
</thead>
<tbody>
<tr>
<td>ein</td>
<td>läuft</td>
<td>läuft</td>
<td>vorhanden</td>
</tr>
<tr>
<td>aus</td>
<td>steht, Fahrgeschwindigkeit = 0 km/h</td>
<td>läuft nicht</td>
<td>keine</td>
</tr>
</tbody>
</table>

Lenkkraftunterstützung

<table>
<thead>
<tr>
<th>Fahrgeschwindigkeit</th>
<th>Lenkwinkelgeschwindigkeit</th>
<th>Fördermenge</th>
<th>Lenkkraftunterstützung</th>
</tr>
</thead>
<tbody>
<tr>
<td>niedrig z. B. Einparken</td>
<td>hoch</td>
<td>hoch</td>
<td>hoch (leichtgängige Lenkung)</td>
</tr>
<tr>
<td>hoch z. B. Autobahnfahrt</td>
<td>niedrig</td>
<td>niedrig</td>
<td>niedrig (straffe Lenkung)</td>
</tr>
</tbody>
</table>
Fahrwerk

ESP-Regelung

1 Steuergerät für ABS mit EDS/ASR/ESP J104
2 Hydraulikeinheit N55 mit Vorladepumpe V64
3 Geber 1 und 2 für Bremsdruck G201/G214
4 Geber für Querbeschleunigung G200
5 Geber für Drehrate G202
6 Taster für ASR/ESP
7 Geber für Lenkwinkel G85
8 Bremslichtschalter
9 ... 12 aktive Drehzahlfühler G44 ... G47
10...12 aktive Drehzahlfühler G44 ... G47
13 Diagnoseleitung
14 Kontrolllampe für Bremsanlage K118
15 Kontrolllampe für ABS K47
16 Kontrolllampe für ASR/ESP K155
17 Fahrzeug- und Fahrerverhalten
18 Eingriff ins Motormanagement
19 Eingriff in die Getriebesteuerung
 (nur Automatik-Fahrzeuge)

Der Querbeschleunigungssensor meldet dem Steuergerät ein seitliches Ausbrechen, der Drehratensensor eine Schleudertendenz des Fahrzeugs. Aus diesen beiden Informationen errechnet sich das Steuergerät den Ist-Zustand des Fahrzeuges.

Weichen Soll- und Ist-Wert voneinander ab, wird ein Regleingriff berechnet.
Danach überprüft das System anhand der einge-gehenden Daten der Sensoren, ob der Eingriff Erfolg hatte:

– wenn ja, wird der Eingriff beendet und das Fahrzeugverhalten weiter beobachtet.

– wenn nein, wird der Regelkreis erneut durchlaufen.

Findet ein Regleingriff statt, wird dies dem Fahrer durch das Blinken der ESP-Leuchte angezeigt.

Bauteile der ESP-Regelung

Der aktive Bremskraftverstärker

Neben der üblichen Funktion, den Fußdruck am Bremspedal mit Hilfe eines Unterdruckes aus dem Saugrohr oder von einer Unterdruckpumpe zu verstärken, übernimmt er die Aufgabe, den Vordruck für einen ESP-Eingriff aufzubauen.

Steht eine ESP-Regelung bevor, zieht die Magnetspule, vom Steuergerät angesteuert, den Metallkern nach vorn und öffnet Ventile innerhalb der Ventilkolben-Magnetseinheit.

Dadurch wird, wie beim Betätigen des Bremspedals, Vordruck in der Kammer 1 (die Kammer 2 bleibt evakuiert) aufgebaut und erzeugt somit den Druck auf das Bremssystem, der von zwei Gebern für Bremsdruck überwacht wird.

Funktion

– Regelung der ESP-, ABS-, EDS-, ASR-, EBV- und MSR-Funktion,
– kontinuierliche Überwachung aller elektrischen Komponenten und
– Diagnose-Hilfe bei Reparaturarbeiten
Relais für Bremslichtunterdrückung J508

Wenn das ESP-System die Magnetspule einschaltet, kann das Bremspedal aufgrund auftretender Toleranzen dabei so stark bewegt werden, dass der Bremslichtschalter den Kontakt zu den Bremsleuchten schließt.

Damit nachfolgende Verkehrsteilnehmer dadurch nicht irritiert werden, unterbricht das Relais J508 die Verbindung zu den Leuchten, solange die Magnetspule angesteuert wird.

Geber für Lenkwinkel G85

Der Rückstellring mit Schleifring bildet die elektrische Verbindung zwischen Airbagsteuergerät und Fahrermodul im Lenkrad. Im Rückstellringgehäuse ist auch der Lenkwinkelsensor G85 untergebracht und übermittelt den Lenkwinkel per CAN-BUS an das Steuergerät J104 (siehe SSP 204).

Nach Austausch der Airbagwickelfeder/Lenkinkelsensor muss die Grundeinstellung durchgeführt werden.

Der Geber für Querbeschleunigung G200
ermittelt die Fahrzeug-Querbeschleunigung.

Der Geber für Drehrate G202
erfasst die Drehrate/Gierrate des Fahrzeuges um die Hochachse.

Die Signale beider Geber dienen dem Steuergerät J104 mit dazu, den aktuellen Ist-Fahrzustand zu ermitteln. Daraus werden die erforderlichen Regelkomponenten für einen optimalen Fahrzustand abgeleitet.

Taster für ASR E256

Im Audi A2 lässt sich die ESP-Funktion grundsätzlich nicht abschalten.

Die ASR-Funktion kann über den Taster deaktiviert werden (bis zu einer Geschwindigkeit von < 50 km/h).

Weitere Informationen zum ESP finden Sie im SSP 204.
Der neue aktive Radsensor für ABS

Ein Sensor wird als aktiv bezeichnet, wenn zu seiner Funktion eine äußere Spannungsversorgung notwendig ist.

Der aktive Drehzahlfühler besitzt ein magnetoresistives Element. Dessen Widerstand ändert sich in Abhängigkeit von den vom Sensorring mit Lesespur geschnittenen Magnetfeldlinien.

Der Sensorring auf der Radnabe besteht aus einer Lesespur mit unterschiedlichen nach Nord- und Südpol magnetisierten Feldern. Der Sensorring rotiert am feststehenden Sensedlement vorbei.

Funktionsprinzip des aktiven Sensors

In unmittelbarer Nähe der magnetisierten Bereiche stehen die magnetischen Feldlinien senkrecht auf der Lesespur. Je nach Polung laufen sie entweder von der Spur weg oder auf sie zu. Da der Abstand zwischen Lesespur und Sensor sehr gering ist, durchdringen die Feldlinien das Sensorelement und verändern dessen Widerstand.

Eine in den Sensor integrierte elektronische Verstärker/Triggerschaltung setzt die Widerstandänderungen in zwei unterschiedliche Strompegel um.

Das bedeutet, vergrößert sich der Widerstand des Sensorelementes aufgrund der Richtung der magnetischen Feldlinien, die durch ihn hindurchlaufen, so fällt der Strom.

Verringert sich der Widerstand, da sich die Richtung der Feldlinien umkehrt, steigt der Strom.

Da sich Nord- und Südpole auf der rotierenden Lesespur abwechseln, entsteht so eine Rechtecksignalfolge, der Frequenz ein Maß für die Drehzahl ist.

Vorteile

- Die Raddrehzahl kann ab 0 km/h und bis Radstillstand gemessen werden.
- Die Raddrehrichtung wird erkannt.
- hohe Korrosionsbeständigkeit
- geringer Einbauerraum
Warnleuchten und Taster in der Diagnose

Tritt ein Fehler während eines Regeleingriffes auf, versucht das System den Eingriff bestmöglich zu Ende zu führen. Nach dem Regelende wird das betroffene Teilsystem abgeschaltet und die Warnlampen angesteuert.

Ein aufgetretener Fehler und das Ansteuern der Warnlampen wird immer im Fehler-speicher abgelegt.

Die ASR-Funktion kann mit dem Taster für ASR abgeschaltet werden.

Warnleuchten/Taster

Kontrolllampe für Bremsanlage K118

Kontrolllampe für ABS K47

Kontrolllampe für ASR/ESP K155

Taster für ASR

Legende

ESP - Elektronisches Stabilitäts-Programm
ASR - Anti-Schlupf-Regelung
ABS - Anti-Blockier-System
EBV - Elektronische Bremskraft-Verteilung
BKL - Brems-Kontroll-Leuchte
ABS/ESP/BKL - Lampenansteuerung Audi A2

<table>
<thead>
<tr>
<th>Systemzustand</th>
<th>Kontrollleuchten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bremse K118</td>
</tr>
<tr>
<td>Zündung ein Prüfableu für ca. 2 s</td>
<td>!</td>
</tr>
<tr>
<td>Unterspannung Unterdrückung der BKL-Ansteuerung für jeweils 10 s nach Unterspannungserkennung</td>
<td>!</td>
</tr>
<tr>
<td>Nach Ablauf der 10 s BKL ein</td>
<td>!</td>
</tr>
<tr>
<td>System i. O.</td>
<td>!</td>
</tr>
<tr>
<td>ASR/ESP - Eingriff</td>
<td>!</td>
</tr>
<tr>
<td>ESP - Eingriff ASR über Taster aus</td>
<td>!</td>
</tr>
<tr>
<td>ASR - Taster aus ABS und ESP bleibt aktiv (z. Z. kein ESP-Eingriff)</td>
<td>!</td>
</tr>
<tr>
<td>ESP - Ausfall</td>
<td>!</td>
</tr>
<tr>
<td>ESP - Ausfall ASR-Taster ein, d. h. ESP-Lampe war bereits an</td>
<td>!</td>
</tr>
<tr>
<td>ABS/ESP - Ausfall Not-EBV bleibt aktiv</td>
<td>!</td>
</tr>
<tr>
<td>EBV - Ausfall alle Systeme schalten ab</td>
<td>!</td>
</tr>
</tbody>
</table>
Bordnetz

Die Verteilung der elektrisch/elektronischen Steckerstationen sowie der Steuergeräte wird auch beim Audi A2 dezentral vorgenommen. Damit ist auch hier eine optimale Leitungsverlegung gesichert.

E-Box Zwischenboden vorn rechts
Kupplungsstation

1. Boseverstärker

2. Endverstärker

3. Steuergerät
 Telematik J499

4. Steuergerät für
 Bedienelektronik, Handy J412

Kupplungsstation
A-Säule rechts

Türsteuergeräte in den
Fensterhebermotoren
Beifahrerseite J387
hinten rechts, optional J389

Schalttafeleinsatz
Diagnose-Interface für
Datenbus (Gateway) J533
Anzeigeinstrumente
Steuergerät mit Anzeige-
einheit im Schalttafel-
einsatz J285

Steuergerät für
Lenkhilfe J500

Steuergerät für
Lüfter für
Kühlmittel J293

Steuерgerät für ABS/ESP J104

Geber für Quer-
beschleunigung G200 und
Geber für Drehrate G202
CD-Wechsler R41

Zwischenboden Kofferraum:
Steuergerät für Bedienelektronik, Navigation J402
Antennendiversity

Steuergerät Einparkhilfe J446

Batterie

Steuergerät für Airbag J234

Türsteuergeräte in den Fensterhebermotoren Fahrerseite J386
hinten links, optional J388

Zusatzrelaisträger
Zwischenboden vorn links
Kupplungsstation

E-Box Zwischenboden vorn links

Kupplungsstation
A-Säule

Steuergerät für 4LV J537
Steuergerät für automatisches Getriebe J217
Zentralsteuergerät für Komfortsystem (ZKE) J393

SSP240_041
Im Audi A2 wird ein wesentlich erweitertes CAN-BUS-System verbaut.

Beim Antriebs-BUS-Teilsystem wurde eine Übertragungsgeschwindigkeit von 500 kBaud gewählt, um eine schnelle Datenübertragung innerhalb der für die Sicherheit wichtigen Systeme zu erreichen.

Bei den beiden Teilsystemen Komfort und Display ist eine niedrigere Übertragungsgeschwindigkeit von 100 kBaud ausreichend.

Dennoch wurden diese Teilsysteme getrennt um die Funktionsausfälle bei Defekt eines CAN-BUS-Teilsystems gering zu halten.
Gateway im Schalttafeleinsatz

Für den Informationsaustausch zwischen diesen Teilsystemen ist eine Verbindung oder ein Zugang - Gateway - erforderlich.

Das Gateway filtert die ankommenden Datensätze von den BUS-Teilsystemen und gibt nur die für den anderen BUS notwendigen Daten weiter.

Beispiel Datenaustausch

![Diagramm des Datenaustausches](image)
Bei der Fehlersuche ist zu beachten, dass Fehlfunktionen der am Gateway angeschlossenen Teilsysteme durch einen Fehler im Schalttafeleinsatz oder innerhalb eines anderen CAN-BUS-Teilsystems verursacht werden können.

Um einen Dialog zwischen der Zentralen Komfort Einheit - Adresswort 46 - und dem Diagnosetester zu ermöglichen, muss „Zündung ein“ geschaltet sein.

Weitere Informationen zur Zentral Komfort Einheit finden Sie ab der Seite 44.

Wegfahrsperre III

Über „Sprung“ gelangen Sie in das Menü Funktion und Bauteile Auswahl.

Menügesteuert werden Sie durch das Programm geführt, wobei die Anpasswerte aus dem alten Kombiinstrument ausgelesen und anschließend, siehe Abbildung, ins neue Kombiinstrument übernommen werden.

Geführte Fehlersuche
Funktions-/Bauteilauswahl
Funktion und Bauteil auswählen

Antrieb (Rep.-Gr. 10 - 39)
Fahrwerk (Rep.-Gr. 40 - 49)
Karosserie (Rep.-Gr. 50 - 97)
Steuergerätefunktionen

Hilfe
Drucken
Sprungziel
Fahrzeugdiagnose
Messtechnik

Menügesteuert werden Sie durch das Programm geführt, wobei die Anpasswerte aus dem alten Kombiinstrument ausgelesen und anschließend, siehe Abbildung, ins neue Kombiinstrument übernommen werden.
Komfort-System

Im Audi A2 wird erstmalig das Komfort-System verbaut.

Das Komfort-System besteht aus der Zentralen Komfort Einheit und mindestens zwei Türsteuergeräten.

Folgende Funktionen werden ausgeführt

Serienausstattung:
- Zentralverriegelung
- elektrische Fensterheber vorn
- Komfort-Schließung
- Innenbeleuchtung
- Ausstiegsleuchten

optional:
- Funkfernbedienung
- elektrische Fensterheber hinten
- Diebstahlschließanlage mit Innenraumüberwachung
- elektrisches Open Sky-Dach

Daraus ergeben sich zwei unterschiedliche Varianten:

- Ein Zentralsteuergerät und zwei Türsteuergeräte, wenn nur in den vorderen Türen elektrische Fensterheber vorhanden sind.
- Ein Zentralsteuergerät und vier Türsteuergeräte, wenn in allen Türen elektrische Fensterheber vorhanden sind.
Zentralsteuergerät für Komfortsystem J393

Das Zentralsteuergerät für Komfortsystem bildet die Zentrale Komfort Einheit (ZKE) und ist im CAN-BUS-System Komfort eingebunden.

Folgende Informationen werden im Steuergerät bearbeitet und anderen Geräten zur Verfügung gestellt:

Tankklappentriegelung
- Schalter für Fernentriegelung/ Tankklappe E204

Heckklappentriegelung
- Schalter für Heckklappe zu F206
- Taster für Entriegelung, Heckklappe-Schließzylinder F248
- 3. Taste Funkfernbedienung

Diebstahlwarnanlage
- Kontaktschalter für Motorhaube F120
- Glasbruchsensoren, Heckscheibe G304
- Massekontakt Radio
- Schalter für Innenraumüberwachung E183
- Sensor für Innenraumüberwachung G209

Antenne für Zentralverriegelung und Diebstahlwarnanlage R47

Handbremsschalter F9

Crash-Signal
- Rückfahrlicht M17
- Schalter für beheizbare Heckscheibe und Außenspiegel E161

bei mechanischen Fensterhebern hinten
- Türkontakt-Signal
- Verriegelungs-Signal
- Safe-Signal

Sind in den Fondtüren keine elektrischen Fensterheber verbaut und damit auch keine Türsteuergeräte vorhanden, wird die Steuerung der Zentralverriegelung der hinteren Türen von der ZKE übernommen.

Tankklappe
- Motor für Tankdeckelverriegelung V155

Heckklappe
- Motor für Heckklappentriegelung V139

Diebstahlwarnanlage
- Signalhorn für Diebstahlwarnanlage H8

Innenlichtsteuerung
- gedimmtes Schalten Innenbeleuchtung
- Ansteuern Kofferraumleuchte

Freigabe für Türsteuergeräte und Open Sky-Dach

Komfortschließen
- Fensterheber
- Open Sky-Dach

Komfortöffnen
- Fensterheber
- Open Sky-Dach

Spiegelheizung zu den Türsteuergeräten

bei mechanischen Fensterhebern hinten
- Motor verriegeln
- Motor safen
Türsteuergeräte

Die Türsteuergeräte sind in das Gehäuse der Fensterhebermotoren integriert und benötigen folgende Signale:

Türsteuergerät

- Ver- und Entriegeln der Türen
- Safen und Entsafen der Türen
- elektrischer Fensterheber mit Überschusskraftbegrenzung
- Steuerung der Schalterbeleuchtung, Ausstiegsleuchte
- zusätzlich Türen vorn
 - Steuerung der Kontroll-LED in der Fahrertür
 - elektrische Spiegelverstellung
 - Spiegelheizung

Schalter Fensterheber
- Freigabe durch Zentrale Komfort Einheit
- Rückmeldung Türschloss
 - Signal Türkontakt
 - Signal verriegelt
 - Signal Safe

zusätzlich Türen vorn
- Schalter Schließzyylinder Ent- und Verriegeln (Beifahrertür nicht bei Funkfernbedienung)

zusätzlich Fahrertür
- Schalter Zentralverriegelung
- Schalter Kindersicherung Fensterheber hinten
- zentrale Fensterheberbetätigung
- Umschalter Spiegelverstellung
- Schalter Spiegelverstellung

Verbindungselement

- Komfort CAN
Die Fensterhebermotoren

sind durch eine Überschusskraftbegrenzung gesteuert. Ein Hall-Sensor ermittelt die Drehgeschwindigkeit der Motorachse.

Trifft die Türscheibe auf ein Hindernis, so stellt der Hall-Sensor eine veränderte Drehzahl des Motors fest.

Darauf hin kehrt das Türsteuergerät die Bewegungsrichtung der Scheibe um.

Fensterheberschalter

Die Fensterheberschalter sind zweistufig ausgeführt.

1. Stufe manueller Hoch- oder Tieflauf
2. Stufe automatischer Hoch- oder Tieflauf
Türschloss

Je Türschloss sind zwei Elektromotoren für Ver-/Entriegeln und Safen/Entsafen integriert. Weiterhin befinden sich folgende Mikroschalter in den Türschlössern.

- Verriegeln über Schließzylinder (nur vorn)
- Entriegeln über Schließzylinder (nur vorn)
- Schloss verriegelt
- Schloss gesafet
- Türkontakt über Schlossfalle 2. Raste

Ist das Fahrzeug mit der Funkfernbedienung ausgestattet, wird der Schließzylinder in der Beifahrertür nicht verbaut.
Steuerung des Open Sky-Daches

Aus Sicherheitsgründen wird die Funktion Komfort-Schließen am Open Sky-Dach nur über den Schließzylinder in der Tür und nicht über die Fernbedienung aktiviert. Die Funktion Komfort-Öffnen kann, wie bekannt, auch über die Fernbedienung aktiviert werden.

Die Kontroll-Leuchtdiode

dient dazu, dem Fahrer beim Verriegeln des Fahrzeugs eine Fehlfunktion des Komfortsystems oder der Diebstahlwarnanlage zu signalisieren.

30 Sekunden nach dem Verriegeln blinkt die Leuchtdiode unabhängig davon, ob eine Fehlfunktion vorliegt mit 0,5 Hz. Der Grund hierfür liegt darin, eine Fehlfunktion des Systems nicht nach außen sichtbar zu machen.

Leuchtdiodensignale in Fahrer- und Beifahrertür (ohne Diebstahlwarnanlage)

<table>
<thead>
<tr>
<th>Zentralverriegelung in Ordnung</th>
<th>0,5 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauersignal 30 s</td>
<td>0,5 Hz</td>
</tr>
</tbody>
</table>

Leuchtdiodensignale in Fahrer- und Beifahrertür (mit Diebstahlwarnanlage und Infrarot-Überwachung)

<table>
<thead>
<tr>
<th>Zentralverriegelung, Diebstahlwarnanlage und Infrarot-Überwachung in Ordnung</th>
<th>3,3 Hz</th>
<th>1,0 Hz</th>
<th>0,5 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauersignal 28 s</td>
<td>kein Signal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zentralverriegelung und Diebstahlwarnanlage aktiv Infrarot-Überwachung defekt</th>
<th>3,3 Hz</th>
<th>1,0 Hz</th>
<th>0,5 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dauersignal 28 s</td>
<td>kein Signal</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zentralverriegelung defekt oder Infrarot-Überwachung defekt</th>
<th>3,3 Hz</th>
<th>1,0 Hz</th>
<th>0,5 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>kein Signal</td>
<td>Dauersignal 28 s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SSP240_110
SSP240_111
Diebstahlwarnanlage mit Innenraumüberwachung

Das Komfortsystem im Audi A2 ist optional mit einer Diebstahlwarnanlage und einer Ultraschall-Innenraumüberwachung erhältlich.

Die Position des Sensors für die Innenraumüberwachung ermöglicht nicht die Erfassung des Laderaumes.

Deshalb wurde erstmals ein Glasbruchsensor an der Heckscheibe verbaut. Dies verhindert das unerkannte Eindringen durch das Zerstören der Heckscheibe.

Ein in der Heckscheibe eingelassener Draht wird durch die Zentral Komfort Einheit bei aktivierter Diebstahlwarnanlage ständig auf Durchgang geprüft. Eine Unterbrechung wird durch die Zentral Komfort Einheit registriert und nachfolgend Alarm ausgelöst.
Diagnose

Das Komfortsystem ist diagnosefähig.

Adresswort 46

Die Eigendiagnose kann nur mit „Zündung ein“ aufgerufen werden.

In der Funktion „Steuergerät codieren“ ist es möglich, durch addieren von Zusatzwerten zur Standard-Codierung Sonderfunktionen wie zum Beispiel

- selektive Zentralverriegelung
- Heckentriegelung ab einer Geschwindigkeitsschwelle sperren
- Verriegelung aller Türen ab einer Geschwindigkeitssperre

zu aktivieren.

Die Zusatzwerte und weitere Möglichkeiten entnehmen Sie bitte der Codiertabelle im aktuellen Reparaturleitfaden.

In der Funktion Anpassung Kanal 21 ist es möglich, einen Funkschlüssel auch ohne einen Zweischlüssel anzulernen.

Im Kanal 60 wird der Zentral Komfort Einheit angegeben, ob ein Klimabedienteil vorhanden ist. Dies wird zur Steuerung der Spiegel über die Heckscheibenheizung benötigt.

Über den Kanal 61 wird die Systemvariante eingestellt. Hier wird eingegeben, ob in dem System zwei oder vier Türsteuergeräte ver- baut sind.
Elektrik

Funktionsplan
Komfort-System

E39 Sperrschalter für Fensterheber hinten links
E40 Schalter für Fensterheber, vorn links
E41 Schalter für Fensterheber, vorn rechts
E43 Schalter für Spiegelverstellung
E48 Umschalter für Spiegelverstellung
E52 Schalter für Fensterheber hinten links
E53 Schalter für Fensterheber hinten links, Fahrer
E54 Schalter für Fensterheber, hinten rechts
E55 Schalter für Fensterheber hinten rechts, Fahrer
E107 Schalter für Fensterheber, in Beifahrertür
E150 Schalter für Innenverriegelung, Fahrerseite
E183 Schalter für Innenraumüberwachung
E204 Schalter für Fernentriegelung Tankklappe
F2 Türkontaktsschalter - Fahrerseite
F3 Türkontaktsschalter - Beifahrerseite
F9 Schalter für Handbremsekontrolle
F10 Türkontaktsschalter hinten links
F11 Türkontaktsschalter hinten rechts
F120 Kontaktsschalter für Diebstahlwarnanlage Front Top
F131 Stellelement für Zentralverriegelung vorn links
F132 Stellelement für Zentralverriegelung hinten links
F133 Stellelement für Zentralverriegelung hinten rechts
F134 Stellelement für Zentralverriegelung hinten rechts
F147 Kontaktsschalter Make-up-Spiegel - Fahrerseite
F148 Kontaktsschalter Make-up-Spiegel - Beifahrerseite
F206 Schalter für Heckklappe zu
F241 Kontaktsschalter im Schließzylinder, Fahrerseite
F242 Kontaktsschalter im Schließzylinder, Beifahrerseite (Fahrzeuge ohne Fernbedienung)
F243 Stellelement für Zentralverriegelung (Safe) Fahrertür
F244 Stellelement für Zentralverriegelung (Safe) Beifahrertür
F245 Stellelement für Zentralverriegelung (Safe) Tür hinten links
F246 Stellelement für Zentralverriegelung (Safe) Tür hinten rechts
F248 Taster für Entriegelung, Heckklappenschließzylinder
G209 Ultraschallsensor für Diebstahlwarnanlage
G304 Glasbruchsensor, Heckscheibe
H8 Signalhorn für Diebstahlwarnanlage
J285 Steugerät mit Anzeigeeinheit im Schalttafeleinsatz
J386 Türsteuergerät, Fahrerseite
J387 Türsteuergerät, Beifahrerseite
J388 Türsteuergerät, hinten links
J389 Türsteuergerät, hinten rechts
J393 Zentralsteuergerät für Komfortsystem
M27 Warnleuchte - Tür links
R47 Antenne für Zentralverriegelung und Diebstahlwarnanlage
S Sicherung
V14 Motor für Fensterheber, links
V15 Motor für Fensterheber, rechts
V17 Motor für Spiegelverstellung (Fahrerseite)
V25 Motor für Spiegelverstellung (Beifahrerseite)
V26 Motor für Fensterheber hinten links
V27 Motor für Fensterheber hinten rechts
V56 Motor für Zentralverriegelung - Fahrertür
V57 Motor für Zentralverriegelung - Beifahrertür
V97 Motor für Zentralverriegelung - Tür hinten rechts
V115 Motor für Zentralverriegelung - Tür hinten links
V139 Motor für Heckklappentriegelung
V155 Motor für Tankdeckelentriegelung
V161 Motor für Zentralverriegelung (Safe), Fahrertür
V162 Motor für Zentralverriegelung (Safe), Beifahrertür
V163 Motor für Zentralverriegelung (Safe), Tür hinten links
V164 Motor für Zentralverriegelung (Safe), Tür hinten rechts
W Innenleuchte vorn
W3 Kofferraumleuchte
W13 Leseleuchte Beifahrerseite
W14 beleuchteter Make-up-Spiegel (Beifahrerseite)
W19 Leseleuchte Fahrerseite
W20 beleuchteter Make-up-Spiegel (Fahrerseite)
W43 Innenleuchte hinten
24 beheizbarer Außenspiegel, Fahrerseite
25 beheizbarer Außenspiegel, Beifahrerseite
1 Masseunterbrechung Radio für Diebstahlwarnanlage
2 Crash-Signal
3 Lampe für Rückfahrlicht rechts, M17
4 Schalter für beheizbare Heckscheibe und Außenspiegel bei Fahrzeugen ohne Klimaanlage
5 Zentralverriegelung-Blinken (Warnlichtschalter)
6 Komfortschließen OPEN SKY-Dach
7 Freigabe für elektrische Fensterheber
K K-Diagnoseanschluss
Aufbau und Funktion

Im Audi A2 arbeiten drei verschiedene BUS-Systeme mit unterschiedlichen Übertragungsgeschwindigkeiten. Das Steuergerät im Schalttafeleinsatz bildet die Schnittstelle (Gateway) zwischen den BUS-Systemen. Der Datenbus Komfort arbeitet auch bei Ausfall einer Verbindung im Notbetrieb weiter. Eine entsprechende Fehlermeldung wird im Fehlerspeicher abgelegt.

Beim Einschalten der Zündung startet die Bedien- und Anzeigeeinheit E87 mit der Einstellung, Temperatur, Luftverteilung und Frischluftgebläsedrehzahl, welche beim letzten Ausschalten der Zündung mit diesem Schlüssel Gültigkeit hatte.

Abhängig von der Fahrzeugausstattung können unterschiedliche Steuergeräte über Datenbus am Steuergerät für Komfortsystem angebunden sein.

<table>
<thead>
<tr>
<th>Steuergerät</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>J104</td>
<td>Steuergerät für ABS mit EDS</td>
</tr>
<tr>
<td>J217</td>
<td>Steuergerät für automatisches Getriebe</td>
</tr>
<tr>
<td>J285</td>
<td>Steuergerät mit Anzeigeeinheit im Schalttafeleinsatz</td>
</tr>
<tr>
<td>J537</td>
<td>Steuergerät für 4LV (Motorelektronik)</td>
</tr>
<tr>
<td>E87</td>
<td>Bedien- und Anzeigeeinheit für Klimaanlage</td>
</tr>
</tbody>
</table>

Die Schlüsselerkennung erfolgt über das Auslesen des Transponderfestcodes. Das Steuergerät für Wegfahrsperrre, integriert im Schalttafeleinsatz, stellt diese Information per CAN-BUS der Bedien- und Anzeigeeinheit E87 zur Verfügung.
Nach Abziehen des Verbindungssteckers kann der Vorwiderstand mit einer Drehbewegung nach links aus dem Gehäuse entnommen werden.

Der Pollenfilter befindet sich zwischen Frischluftgehäuse und Luftverteilung in einem Gehäuseeinschub. Er ist vom Fahrzeuginnenraum aus zugängig.

Nach Lösen des Filterdeckels (Schiebestücke) kann der Filter nach unten herausgezogen werden.

Bei Fahrzeugen ohne Klimaanlage kann der Vorwiderstand für Frischluftgebläse N24 nach dem Entfernen des Handschuhkastens ausgebaut werden.
Luftverteilung

Luftführung im Fahrzeug

- Ausströmer Windschutzscheibe
- Schalttafelausströmer
- Fußraumausströmer
- Frischluftgebläse
- Pollenfilter
- Verdampfer
- Frischluft
- Staudruckklappe
- Wärmetauscher
- elekttrische Zusatzheizung (PTC-Zusatzheizer nur Dieselmotoren für nicht „Kaltländer“)

(SSP240_007 und SSP240_008)
Frischluft-/Umlufluflappenn

Die Umschaltung der Frischluft-/Umlufluflappe erfolgt elektrisch mit einem Stellmotor.

Mittels einer Hebelkinematik werden beide Klappen in Abhängigkeit voneinander je nach Fahrerwunsch verstellt. In der Stellung „Defrost“ wird der Umlufluflschalter elektronisch blockiert.

Der Wärmetauscher sitzt unten am Luftverteilergehäuse des Klimagerätes.

Der Ausbau des Wärmetauschers ist im eingebauten Zustand des Klimagerätes möglich.

Beide Kühlmittel-Anschlüsse werden mit zwei Federklemmen verrastet.
Kompressor

Das Konzept des neuen Kompressors:
– einseitig arbeitender Taumelscheibenkompressor mit 6 Hubkolben
– variables Hubvolumen zur Anpassung an den Kälteleistungsbedarf

Zur Funktion

Die Schrägstellung der Taumelscheibe ändert sich und bestimmt damit das Hubvolumen.

Für die Regelung des Kompressors werden die äußeren Bedingungen, d. h. Insassenwunschtemperatur, Wettersituation und die thermische Belastung im System ausgewertet.

Diese Aufgabe übernimmt die Bedien- und Anzeigeeinheit E87. Sie wertet dazu ein vom Druck im Kältemittelkreislauf abhängiges Rechtecksignal des Hochdruckgebers G65 aus.

Unterscheidungsmerkmale:
– externe Regelfunktion über Regelventil N280
– Hohlkolben
– Riemenscheibenantrieb (keine Magnetkupplung)

Riementrieb:
– Der Kompressor läuft bei abgeschalteter Anlage kontinuierlich weiter.
Die Förderleistung beträgt dabei unter 2 %.

Eine optische und akustische Überprüfung der Anlage ist aufgrund der entfallenen Magnetkupplung nicht mehr möglich.
Das Hubvolumen des Kompressors kann durch Schrägstellung der Taumelscheibe variiert werden. Ist der Klimakompressor nicht in Betrieb, befindet sich die Taumelscheibe in senkrechter Position (die Kolben haben unter 2 % Hub).

Die Verstellung der Taumelscheibe wird durch unterschiedliche Drücke im Kompressor bewirkt.

- Saugdruck
 Druck auf Niederdruckseite des Systems bzw. Druck des Kältemittels vor Kompressor

- Hochdruck
 Druck des Kältemittels nach der Kompression, Hauptdruck zur Verstellung der Taumelscheibe in Richtung Vollast

- Kurbelgehäusedruck
 Gegendruck im Kurbelgehäuse des Kompressors zusammen mit der Rückholfeder der Taumelscheibe in Richtung 0-Füllung

Verantwortlich für die Balance dieser Druckunterschiede ist das Regelventil, an dem alle Drücke anliegen.

Haupteinfluss auf das aus den Drücken resultierende Kräftegleichgewicht haben der Hoch- und der Kurbelgehäusedruck.

Der Hochdruck wirkt im Verdichtungsraum auf den Kolben und versucht die Taumelscheibe schräger zu stellen = großes Hubvolumen.

Der Kurbelgehäusedruck entwickelt eine Kraft, die die Taumelscheibe eher in senkrechte Stellung bringen will.
Die Riemenscheibe besteht aus Mitnehmer- und Riemenscheibe.

Beide Scheiben werden durch 1 Gummi- formelement kraftschlüssig verbunden.

Das Gummielement mit 4 Ausformungen verbindet die Riemen- und Mitnehmerscheibe.
Tritt eine Gefahrsituation ein - Kompressor blockiert - steigen im Bereich der Gummi- formteile die Übertragungskräfte zwischen Mitnehmer- und Riemenscheibe extrem an.

Die Riemenscheibe drückt das Gummi- element in Drehrichtung auf die blockierte Mitnehmerscheibe.

Das Gummielement verformt sich an den 4 Ausformungen. Der Druck auf der Mit- nehmerscheibe steigt und verformt diese bis keine Verbindung mehr zwischen Riemend- und Mitnehmerscheibe besteht. Somit ist eine Beschädigung des Einriementriebes aus- geschlossen.
In Fahrzeugen mit Dieselmotoren in bestimmten Ländern wird die Heizung über eine elektrische Zusatzheizung unterstützt.

Verbrauchsoptimierte Motoren weisen beim Kaltstart bei niedrigen Außen-Temperaturen nicht genügend Abwärme im Kühlmittel auf, um den Fahrzeuginnenraum durch einen konventionellen Heizkörper zu beheizen.

Zu diesem Zweck lässt sich vorteilhaft eine PTC-Heizung als Zuheizer in eine Klimaanlage integrieren.

Sie erwärmt die dem Innenraum zugeführte Luft mit elektrischer Energie aus dem Bordnetz. So steht nach dem Kaltstart sofort Wärme zum Heizen zur Verfügung.

Der PTC, ein Kaltleiter, wandelt elektrische Energie in Wärme um.

Die Stromversorgung erfolgt mit zwei Kontaktblechen. Sie leiten die Wärme an die Wellrippe, wo sich die dem Innenraum zugeführte Luft erwärmt.
Der Einsatz dieser „Zusatzheizung“ ist hauptsächlich für Audi A2-TDI-Fahrzeuge in bestimmten Ländern vorgesehen.

Sie dient einer schnelleren Erwärmung
- des Kühlwasserkreislaufes des Motors
- des Fahrgastraumes
 (Scheibenenteisung, Beschlagentfernung)

Das Steuergerät ist diagnosefähig (Adresswort 18). Einträge im Fehler- speicher werden auch nach Spannungsunterbrechung weiter gehalten.
Funktionsablauf

1. Heizwasserkreislauf

Der Wassereintritt des zu beheizenden Kühl- mittels ist am Wassereintrittsstutzen. Über den Wärmetauscher, der die Funktion eines Wärmetauschers erfüllt, wird das Wasser nach der Aufheizphase über den Wasseraus- tritt dem Heizkreislauf des Motors zugeführt.

2. Brennluftzuführung

Das Brennluftgebläse saugt Frischluft an und leitet sie über den Brennluftkanal zum Brenn- raum.

3. Kraftstoffversorgung

Von der Kraftstoffdosierpumpe wird Kraftstoff angesaugt und über eine interne Zuleitung dem sogenannten Verdampfer zugeführt.

4. Verbrennungsvorgang

Der Kraftstoff und die Luft vermischen sich im Brennraum.
Vom Glühstift wird dann das Gemisch entzün- det.
Die sich im Brennraum entfaltende Verbren- nung setzt sich in den Flammraum zur eigent- lichen Heizflamme fort.
Im Flammraum findet der Wärmeaustausch zwischen Flamme und Wärmeüberträger statt.

5. Abgasanlage

Aus dem Flammraum werden die Abgase über den Abgasaustritt und einer Abgas- anlage aus dem Unterfahrschutz ins Freie geleitet.

6. Steuerung

Über ein integriertes Steuergerät wird die Anlage nach An- bzw. Abschaltkriterien vom Motorsteuergerät (z. B. Kühlmitteltemperatur) gestartet oder abgeschaltet.
Von den Temperatursensoren werden die unterschiedlichen Temperaturen in der Anlage wie z. B. Flammtemperatur und Wassertemperatur überwacht und vom Steuergerät entsprechend geregelt.
Heizung/Klimaanlage

Systemübersicht

In die Systemregelung gehen ein:

- die Ausströmtemperaturen (Geber im Klimagerät)
- die Innentemperatur vom Temperaturfühler im Bedienteil der Klimaanlage und die Temperaturwahl
- das Druckniveau im Kältemittelkreislauf
- die Außentemperatur (über CAN vom Steuergerät im Schalttafeleinsatz) vom Fühler in der Stoßstange
- spezifische Motorkenndaten (z. B. hohe Kühlmitteltemperatur, Beschleunigung, Leerlauf)
Diagnoseanschluss

Steuergert für Lüfter für Kühlmittel J293

Lüfter für Kühlmittel V7

Regelventil für Kompressor Klimaanlage N280

Stellmotor für Temperaturklappe V68 mit Potentiometer G92

Stellmotor für Defrostklappe V107 mit Potentiometer G135

Stellmotor für Umluftklappe V113 mit Potentiometer G143

Stellmotor für Zentralklappe V70 mit Potentiometer G112

Vorwiderstand für Frischluftgebläse N24

Steuergert für Frischluftgebläse J126 mit Frischluftgebläse V2

Signale:
ECON-Signal
Drehzahlanhebung
Klimakompressor
Heizung/Klimaanlage

Funktionsplan

E87 Bedien- und Anzeigeeinheit für Klimaanlage
G65 Hochdruckgeber
G89 Temperaturfühler - Frischluftansaugkanal
G92 Potentiometer im Stellmotor für Temperaturklappe
G107 Fotosensor für Sonneneinstrahlung
G112 Potentiometer im Stellmotor für Zentralklappe
G135 Potentiometer im Stellmotor für Defrostklappe
G143 Potentiometer im Stellmotor für Umluftklappe
G191 Geber für Ausströmtemperatur, Mitte
G192 Geber für Ausströmtemperatur, Fußraum
G263 Geber für Ausströmtemperatur, Verdampfer
J126 Steuergerät für Frischluftgebläse
N280 Regelventil für Kompressor, Klimaanlage
S Sicherung
V2 Frischluftgebläse
V68 Stellmotor für Temperaturklappe
V70 Stellmotor für Zentralklappe
V107 Stellmotor für Defrostklappe
V154 Stellmotor für Frischluft-/Umluftklappe
Z1 beheizbare Heckscheibe

1 Start-Stop-Signal vom Steuergerät für automatisches Getriebe J217
2 Signal Klemme 31b vom Relais für Wisch-Wasch-Intervallautomatik J31
3 Drehzahlanhebung
4 ECON-Signal
5 Klimakompressor
6 Lüfterstufe 1
7 Lüfterstufe 2

K-Diagnoseanschluss

CAN-H KOMFORT Anschluss zum Datenbus KOMFORT
CAN-L KOMFORT
Technische Daten Audi A2

<table>
<thead>
<tr>
<th>Datenart</th>
<th>Einheit</th>
<th>1,4 TDI (55 kW)</th>
<th>1,4 (55 kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestellschlüssel</td>
<td></td>
<td>8Z0 044</td>
<td>8Z0 014</td>
</tr>
<tr>
<td>Motor/Elektrik</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motorkennbuchstabe</td>
<td></td>
<td>AMF</td>
<td>AUA</td>
</tr>
<tr>
<td>Motorgewicht trocken (DIN 70020-A)</td>
<td>kg</td>
<td>123</td>
<td>90</td>
</tr>
<tr>
<td>Motorbauart</td>
<td></td>
<td>Reihen-3-Zylinder, Dieselmotor mit Abgasturboaufladung</td>
<td>Reihen-4-Zylinder, Ottomotor</td>
</tr>
<tr>
<td>Ventilsteuerung</td>
<td></td>
<td>Obenliegende Nockenwelle (OHC)</td>
<td>Zwei obenliegende Nockenwellen (DOHC)</td>
</tr>
<tr>
<td>Ventile pro Zylinder</td>
<td></td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Hubraum</td>
<td>cm³</td>
<td>1422</td>
<td>1390</td>
</tr>
<tr>
<td>Bohrung x Hub</td>
<td>mm</td>
<td>79,5 x 95,5</td>
<td>76,5 x 75,6</td>
</tr>
<tr>
<td>Verdichtung</td>
<td></td>
<td>19,5</td>
<td>10,5</td>
</tr>
<tr>
<td>max. Leistung kW (PS)/bei min⁻¹</td>
<td></td>
<td>55 (75)/4000</td>
<td>55 /75)/5000</td>
</tr>
<tr>
<td>max. Drehmoment Nm/bei min⁻¹</td>
<td></td>
<td>195/2200</td>
<td>126/3800</td>
</tr>
<tr>
<td>Motormanagement</td>
<td></td>
<td>Bosch EDC 15</td>
<td>Magneti Marelli</td>
</tr>
<tr>
<td>Gemischaufbereitung</td>
<td></td>
<td>Pumpe-Düse-Direkteinspritzung, Turboaufladung</td>
<td>elektronische, sequentielle Multipoint-Einspritzung, adaptive Leerlauffüllungsregelung, Schubabschaltung</td>
</tr>
<tr>
<td>Zündsystem</td>
<td></td>
<td>Schnellvorglühanlage</td>
<td>verteilerlose Zündanlage mit ruhender Hochspannungsverteilung, Longlife-Zündkerzen</td>
</tr>
<tr>
<td>Abgasreinigungssystem</td>
<td></td>
<td>Oxydationskatalysator, Abgasrückführung</td>
<td>2/3-Wege-Katalysator, 2 beheizte Lambdasonden, Aktivkohlefilter</td>
</tr>
<tr>
<td>Emissionsklasse nach 94/12/EG</td>
<td></td>
<td>EU 3</td>
<td>EU 4</td>
</tr>
<tr>
<td>Zündfolge</td>
<td></td>
<td>1 - 2 - 3</td>
<td>1 - 3 - 4 - 2</td>
</tr>
<tr>
<td>Batterie</td>
<td>A/Ah</td>
<td>420 A/82 Ah</td>
<td>380 A/80 Ah</td>
</tr>
<tr>
<td>Generator</td>
<td>A max.</td>
<td>120 A</td>
<td>90 A</td>
</tr>
<tr>
<td>Kraftübertragung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antrieb</td>
<td></td>
<td>Frontantrieb</td>
<td></td>
</tr>
<tr>
<td>Kupplung</td>
<td></td>
<td>Hydraulisch betätigte Einscheiben-Trockenkupplung mit asbestfreien Belägen</td>
<td></td>
</tr>
</tbody>
</table>
Datenart

<table>
<thead>
<tr>
<th>Datenart</th>
<th>Einheit</th>
<th>1,4 TDI (55 kW)</th>
<th>1,4 (55 kW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kupplungsdurchmesser</td>
<td>mm</td>
<td>215</td>
<td>200</td>
</tr>
<tr>
<td>Getriebeart</td>
<td></td>
<td>5-Gang-Schaltgetriebe, vollsynchronisiert, inkl. Rückwärtsgang</td>
<td></td>
</tr>
<tr>
<td>Getriebekennbuchstabe</td>
<td></td>
<td>EWO</td>
<td>EYX</td>
</tr>
<tr>
<td>Getriebeübersetzung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Gang</td>
<td></td>
<td>3,78</td>
<td>3,45</td>
</tr>
<tr>
<td>2. Gang</td>
<td></td>
<td>2,12</td>
<td>2,10</td>
</tr>
<tr>
<td>3. Gang</td>
<td></td>
<td>1,36</td>
<td>1,39</td>
</tr>
<tr>
<td>4. Gang</td>
<td></td>
<td>0,97</td>
<td>1,03</td>
</tr>
<tr>
<td>5. Gang</td>
<td></td>
<td>0,76</td>
<td>0,81</td>
</tr>
<tr>
<td>R.-Gang</td>
<td></td>
<td>3,60</td>
<td>3,18</td>
</tr>
<tr>
<td>Achsübersetzung</td>
<td></td>
<td>3,39</td>
<td>3,88</td>
</tr>
</tbody>
</table>

Fahrwerk/Lenkung/Bremse

Vorderachse
McPherson-Federbeinachse mit unteren Dreiecksquerlenkern, Querstabilisator

Hinterachse
Verbundlenkerachse mit getrennter Feder-Dämpfer-Anordnung

Lenkung
elektro-hydraulische wartungsfreie Zahnstangen-Lenkung

Lenkradumdrehungen Anschlag zu Anschlag
2,9

Gesamtlenkübersetzung
16,3

Wendekreis
m
10,5

Bremssystem vorn/hinten
Zweikreis-Bremsanlage mit diagonaler Aufteilung, Anti-Blockier-System ABS mit Elektronischer Bremskraftverteilung EBV, Elektronische Differentialsperre EDS, Antriebsschlupfregelung ASR, Elektronisches Stabilitätsprogramm ESP

Fahrwerk/Lenkung/Bremse

<table>
<thead>
<tr>
<th>Bremsanlage</th>
<th>Faustsattel-Scheibenbremse vorn/Trommelbremse hinten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bremsendurchmesser vorn/hinten</td>
<td>mm</td>
</tr>
<tr>
<td>256 x 22/14“/200 x 40</td>
<td>256 x 22/14“/200 x 40</td>
</tr>
<tr>
<td>Räder</td>
<td>5,5 J x 15</td>
</tr>
<tr>
<td>Einpresstiefe der Felgen</td>
<td>mm</td>
</tr>
<tr>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Reifengröße</td>
<td>175/60 R15 V</td>
</tr>
<tr>
<td>Datenart</td>
<td>Einheit</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Karosserie/Abmessungen</td>
<td></td>
</tr>
<tr>
<td>Art der Karosserie</td>
<td></td>
</tr>
<tr>
<td>Anzahl Türen/Sitzplätze</td>
<td></td>
</tr>
<tr>
<td>Stirnfläche A</td>
<td>m²</td>
</tr>
<tr>
<td>Luftwiderstandsbeiwert c_w</td>
<td></td>
</tr>
<tr>
<td>Gesamtlänge</td>
<td>mm</td>
</tr>
<tr>
<td>Breite ohne Spiegel</td>
<td>mm</td>
</tr>
<tr>
<td>Breite inkl. Spiegel</td>
<td>mm</td>
</tr>
<tr>
<td>Fahrzeughöhe, leer</td>
<td>m</td>
</tr>
<tr>
<td>Radstand</td>
<td>mm</td>
</tr>
<tr>
<td>Spurweite vorn/hinten</td>
<td>mm</td>
</tr>
<tr>
<td>Überhang vorn/hinten</td>
<td>mm</td>
</tr>
<tr>
<td>Bodenfreiheit beladen/unbeladen</td>
<td>mm</td>
</tr>
<tr>
<td>Höhe Ladekante</td>
<td>mm</td>
</tr>
<tr>
<td>untere Heckklappenweite</td>
<td>mm</td>
</tr>
<tr>
<td>obere Heckklappenweite</td>
<td>mm</td>
</tr>
<tr>
<td>Durchladebreite Gepäckraum</td>
<td>mm</td>
</tr>
<tr>
<td>Gepäckraumlänge</td>
<td>mm</td>
</tr>
<tr>
<td>Gepäckraumlänge/-breite bei umgeklappter Rücksitzbank</td>
<td>mm</td>
</tr>
<tr>
<td>Gepäckraumlänge/-breite bei ausgebauter Rücksitzbank</td>
<td>mm</td>
</tr>
<tr>
<td>Ladehöhe Gepäckraum</td>
<td>mm</td>
</tr>
<tr>
<td>Gepäckraumvolumen</td>
<td>l</td>
</tr>
<tr>
<td>Komfortmaß</td>
<td>mm</td>
</tr>
<tr>
<td>Kopfraum vorn/hinten</td>
<td>mm</td>
</tr>
<tr>
<td>Kopffreiheit vorn/hinten</td>
<td>mm</td>
</tr>
<tr>
<td>Sitzhöhe vorn/hinten</td>
<td>mm</td>
</tr>
<tr>
<td>Ellbogenweite vorn/hinten</td>
<td>mm</td>
</tr>
</tbody>
</table>

Gewichte

<table>
<thead>
<tr>
<th></th>
<th>kg</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Leergewicht (ohne Fahrer)</td>
<td></td>
<td>990</td>
<td>895</td>
</tr>
<tr>
<td>zul. Gesamtgewicht</td>
<td>kg</td>
<td>1500</td>
<td>1380</td>
</tr>
<tr>
<td>Datum</td>
<td>Einheit</td>
<td>1,4 TDI (55 kW)</td>
<td>1,4 (55 kW)</td>
</tr>
<tr>
<td>-----------</td>
<td>---------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Zuladung 4/5-Sitzer</td>
<td>kg</td>
<td>510</td>
<td>485</td>
</tr>
<tr>
<td>zul. Achslast vorn/hinten</td>
<td>kg</td>
<td>830/750</td>
<td>770/700</td>
</tr>
<tr>
<td>zul. Anhängelasten</td>
<td>Angebot ohne Anhängerkupplung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Füllmengen

<table>
<thead>
<tr>
<th>Füllmenge</th>
<th>l</th>
<th>5,0 - 5,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kühlsysteminhalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motorölinhalt</td>
<td>4,3</td>
<td>3,3</td>
</tr>
<tr>
<td>Tankinhalt</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Scheibenwaschbehälter</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Fahrleistungen/Verbrauch/Akustik

<table>
<thead>
<tr>
<th>Fahrleistung</th>
<th>km/h</th>
<th>173</th>
</tr>
</thead>
<tbody>
<tr>
<td>bei Drehzahl</td>
<td></td>
<td>4072</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5016</td>
</tr>
<tr>
<td>Beschleunigung</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>0 ... 80 kmh</td>
<td>8,4</td>
<td>7,7</td>
</tr>
<tr>
<td>0 ... 100 kmh</td>
<td>12,3</td>
<td>12,0</td>
</tr>
<tr>
<td>Elastizität im 4./5. Gang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 ... 100 kmh</td>
<td>8,8/13,0</td>
<td>11,5/17,0</td>
</tr>
<tr>
<td>60 ... 120 kmh</td>
<td>14,8/19,7</td>
<td>17,5/27,5</td>
</tr>
<tr>
<td>Kraftstoffart</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel 49 CZ/PME</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Super bleifrei 95 ROZ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Verbrauch nach MVEG II

<table>
<thead>
<tr>
<th>Verbrauch</th>
<th>l/100 km</th>
<th>5,6</th>
<th>8,2</th>
</tr>
</thead>
<tbody>
<tr>
<td>städtisch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>außerstädtisch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>insgesamt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO₂-Emission</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>theoret. Reichweite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Außengeräuschpegel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stand/Vorbeifahrt</td>
<td>dB(A)</td>
<td>80/72</td>
<td>74/71</td>
</tr>
</tbody>
</table>

Wartung/Garantie Inland

<table>
<thead>
<tr>
<th>Wartung/Garantie</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ölwechselintervall</td>
<td>km</td>
<td>bis zu 50.000 km/2 Jahre*</td>
</tr>
<tr>
<td>Inspektionsintervall</td>
<td>km</td>
<td>bis zu 50.000 km/2 Jahre*</td>
</tr>
<tr>
<td>Versicherungsklassen</td>
<td>VK/TK/HK</td>
<td>14/25/16</td>
</tr>
<tr>
<td>Gewährleistung</td>
<td>Jahre</td>
<td>1 (ohne Kilometerbegrenzung)/3/12</td>
</tr>
</tbody>
</table>
Reparaturkonzept des Audi A2

Allgemeine Reparatur → Alle Audi-Händlerbetriebe

Karosseriearbeiten (Kleben, Nieten) → Alle Audi-Händlerbetriebe mit Karosserieabteilung inklusive Kleben/Nieten

Strukturschäden Open Sky → Nur in Alu-Stützpunktbetrieben (Schweißen)

Spezialwerkzeuge/ Betriebseinrichtungen

Frontabdeckung Audi
Bestell-Nr. VAS 5191

Schutzhülle für Front Top
Bestell-Nr. VAS 6011
Montagevorrichtung Radlager
Bestell-Nr. T10064

Fixierbolzen
Bestell-Nr. T10096

Druckstück für AL-Konsolenlager Vorderachse
Bestell-Nr. T40023
Einrichtungszange für Bremspedal
Bestell-Nr. T40024

Adapter für Abfangvorrichtung
Bestell-Nr. 10-222A 13

Ergänzung für hydraulisches Werkzeug
(z.B. für V.A.G 1459 B)
Bestell-Nr. offen

Weitere nicht aufgeführte Spezialwerkzeuge, die für den Audi A2 benötigt werden, fanden ihren Ersteinsatz in weiteren Konzernmodellen.
AUDI A2 - Technik
Konstruktion und Funktion
Selbststudienprogramm 240